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Abstract--The flow of solid particles in air streams involves a great deal of variables and complex phenomena, 
difficult to analyse. In practice the flow quantities in gas-solid flows are predicted by the use of empirical 
correlations of data or semi-empirical methods. The predictive power of these methods varies substantially 
between different systems. This paper presents an analytical approach to the subject of gas-solid flows, based 
on a turbulent model. The mixture is modeled as a variable density fluid flowing in a duct; the equations for the 
Reynolds stress incorporate the variation of velocity and density together, and yield the velocity profile of the 
flow and average quantities of interest such as the mass flux, the friction factor, the average density and average 
areas occupied by each phase. The predicted values for the friction factor are compared with known 
correlations emanating from experimental data. It is found that there is a very good agreement between the 
predicted values and the experimental correlations. 

1. INTRODUCTION 

The pneumatic transport of materials is an old and efficient technique for solid material 
transport, which is recently encouraged by the high cost of alternative transportation tech- 
niques. Pneumatic transport facilities are now widely used by industry for the transportation of a 
variety of solids through intermediate distances. The design of the components used is based 
primarily on experimental data and correlations. Since 1924, when the first scientific works 
appeared in the literature (C~asterstadt 1924; Cramp & Priestly 1924) there have been many 
experimental investigations reported in scientific journals on the subject of gas-solid flows. The 
theoretical analyses of the subject are still very few; in fact many of the analyses are simply using 
the separated flow model or dimensional analysis in order to develop correlations from the 
experimental data. 

As regards the pressure drop in straight pipes the literature contains a number of experi- 
mental data sets and correlations, which are widely used by engineers: Rose & Duckworth 
(1969) made a dimensional analysis and developed a correlation based on their own pressure 
drop data. Their analysis includes ten dimensionless groups, some of which seem to have very 
small influence on the friction factor. Dogin & Lebeder (1962) developed a correlation by using 
only six groups; it seems that many experimental data (Konchesky et al. 1975a, 1975b) would 
agree fairly well with this correlation. Rose & Barnacle (1957) have used a correlation with only 
three dimensionless groups, while Pfeffer's et at. (1966) correlation only contains two groups, the 
loading of the flow and the Reynolds number of the gas phase, (from which the friction factor 
of the gas phase is derived). Jones et al. (1967) provide also a correlation for the frictional 
pressure drop, based on their own data. The last three correlations seem to use similar 
techniques and parameters with the pioneering work of Clark et al. (1953) who defined several 
of the variables now in use. During the seventies a great deal of experimental work was 
reported in three volumes of "Pneumotransport" (1971, 1973, 1980) emanating from an equal 

number of conferences organized by BHRA. Two monograms by Soo (1967) and Gorier & 
Aziz (1972) and a handbook (Hetsroni 1982) and contain a great deal of information on the 
experimental work done in this field. 

The only analytical approach to the subject appears to be Julian & Dukler's (1965) who 
developed an eddy viscosity model for the calculation of friction factors in gas-solid flows. This 
model assumes constant concentration profiles for the flows analyzed and employs an empirical 
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correlation for the eddy viscosity of the fluid. However, the condition of constant concentration 
profiles imposes a severe restriction to the applicability of the model. Other investigators (Levy 
1963; Maeder & Michaelides 1980; Shook & Daniel 1969) have developed similar models for 
gas-liquid or solid-liquid flows, using other restrictions, with various degrees of success. 

The object of this work is to develop a model of two-phase gas-solid mixtures based on a 
variable-density turbulence set of equations. The flow will be taken to be in a circular duct. The 
fluid behaves as a single-phase fluid with variable time-averaged local density.The variations of 
the density are due to the fact that the distribution of solid particles in the pipe is not uniform. 
Experimental data by Soo et al. (1960, 1964) and Spencer et al. (1966) show that the particle 
concentration exhibits a maximum at the center of the pipe in the absence of electrostatic 
effects. The concentration profile for vertical pipes is symmetric and the distribution of the 
solid particles may be well approximated with a parabolic curve. Thus, the time-average local 
density of the flow will also exhibit a similar distribution. The variation of the local density as 
well as the velocity distribution are taken into account in the expression for the turbulent 
Reynolds' stresses. The shear stress expression yields the velocity profile, (which is different 
than that for a single-phase fluid with constant density); hence, certain average quantities are 
obtained, such as the mass flux, average velocity of the variable density fluid and space-average 
density. From the above, the friction factor is calculated as well as some average quantities of 
importance to the separated flow models, such as relative velocity, holdup and superficial 
velocities. 

The model developed is based on phenomenological methods for the behavior of the 
variable density fluid. As such, it provides good results for the time-average flow quantities and 
resolves unknown conditions of local particle behavior. It is not, however, claimed to represent 
accurately the behavior of individual particles in the flow field or to answer questions about the 
interaction of particles. It must be considered as a mechanistic model that has good agreement 
with experimental results and predicts certain average quantities, useful to the designer of a 
pneumatic system. 

2. FORMULATION OFTHE PROBLEM 
This study examines the adiabatic flows in a pipe carrying a symmetric suspension of solid 

particles in a gas. This situation may occur in practice in vertical pneumatic conveying systems. 
The objective of the study is to develop a model of the flow, which would predict the friction 
factor, pressure drop, and average quantities of interest such as mean velocities, discharge 
density and slip between the two phases. 

The Navier-Stokes equations with Reynolds' stresses are developed. If the boundary 
conditions do not vary appreciably in one direction, then the problem posseses two length 
scales one very much larger than the other. Changes in fluid properties will occur more 
gradually in the longitudinal direction than in the transverse one. Thus, with the exception of 
pressure gradient all the other derivatives in the longitudinal direction can be neglected. The 
longitudinal changes in the fluid properties may be introduced later with no appreciable loss in 
accuracy. This technique has been tried successfully in other fields of fluid mechanics such as 
aerodynamics. Accordingly, the flow is assumed in one dimension, z, with aulOr ~, Ou/Oz. The 
pressure gradient in the radial direction is assumed zero (a usual assumption in pipe flows) and 
the flow is assumed isothermal. The equation that governs the flow may be written in vectorial 

form: 
Du p ~ - =  -Vp +/zVZu + go [1] 

where 

u = u ( r ) ,  ~21 
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and 

dpldr = 0. [3] 

Where n is the longitudinal velocity, p the density, p the pressure, # the viscosity of the fluid, g 
the gravitational acceleration and r the radial distance. For a steady state flow, [1] yields: 

d p _ l ~  d [ r d U \ +  l d . ,. 
d - - z - r d r ~  - ~ }  r d - ;  t r r  j ' + g p '  [4] 

in which ~-' is the Reynolds stress, V. the viscosity and p the density of the fluid. 

3. THE REYNOLDS STRESS 

In a compressible flow field it has been shown by Schlichting (1978) and Pai (1957) that: 

.r' = - (u + u ' ) (v  + v')(p + p'), [5] 

where u and v are the time-average values of the velocity vector in the longitudinal and radial 
direction, the primes denote the turbulent perturbations and the bar time-average. Bearing in 
mind that in a one-dimensional flow v = 0, [5] yields: 

"r' = - (p u'v '  + u p'v '  + u 'p 'v ' ) .  [Sa] 

The last term may be neglected as being the product of three small fluctuation terms and thus, 
of one order of magnitude lower than the first two terms. Therefore, the expression for the 
Reynolds stress becomes: 

• ' = - ( p  u ' v '  + u p ' v ' ) .  [Sb] 

It is apparent that the Reynolds stress is comprised of two momentum exchange terms one 
stemming from velocity fluctuations and the other from the combined effect of density and 
velocity fluctuations. The last term is always zero in studies pertinent to incompressible 
single-phase flows. 

The choice of closure relationship for the Reynolds stress ~-' must satisfy the dissipation 
inequality dictated by the second law of thermodynamics: 

~., du _> 0 [6] H; , 

which states that the Reynolds stress must act in the direction of the velocity gradient. 
Therefore, the shear stress of the fluid at any radial position is the sum of the viscous and 

the turbulent components: 

du + ~,, [7] 
T = ~ d y  

where 

y=  t o - r ,  

is the distance from the wall of the pipe and ro the pipe radius. 

[8] 
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It is usual to divide the fluid region of the pipe in two parts: the viscous sublayer, extending 
from the wall to a distance Yo, and the turbulent region from Yo to the center of the pipe. The 
viscous stress ~(du/dy) is the dominant term in [8] inside the viscous sublayer, while the 
Reynolds stress T' dominates in the turbulent region. Hence, we may write: 

d u  
1" ~ p. ~yy, 0-<y <yo; [9] 

and 

* ~ '  yo--- y <- to. [10] 

The shear stress ~- has the value zero at the center of the pipe and its maximum value ~'w is 
attained at the wall. 

For a steady-state flow 
equation which reads: 

situation the momentum equation reduces to a force balance 

2dz I -~-+ p r d r = O .  [ii]  

This equation yields for the shear stress Tw at the wall: 

rodp g f o  "° d--z + '7",,, + pr dr = O . [12] 

When the pressure gradient dpldz is eliminated between the above two equations the expres- 
sion for the shear stress becomes: 

• [131 

where the density P is a function of r as confirmed by experimental results (Soo 1960). The 
functional form of p will be specified later. 

Since the width of viscous sublayer Yo is very small in comparison with the pipe radius r0 it 
is often assumed that the apparent stress at Yo is equal to the wall shear stress Tw (Schlichting 
1978) 

~'w -~ ~'(Yo) = ~'(Yo) = poV .2 • [14] 

The quantity V* is the shear velocity of the flow and is defined in terms of [14]. The shear 
velocity is a fictitious velocity related to the velocity gradient rather than the average velocity 
itself. 

It is necessary to use a closure equation for ~,' in terms of the velocity gradient, since the 
form of [5b] is not suitable for computations given that the fluctuations p', u' and v' are 
unknown. This closure equation is subject to the constraint of [6] for positive entropy 
production. There are several hypotheses in single phase flow that yield a suitable form for the 
closure equation. Among them are Prandtl's mixing length-theory (1925), von Karman's 

similarity hypothesis (1950) and Taylor's vorticity hypothesis (1932). All of them lead to similar 
results for the velocity distribution in the pipe and consequently agree well on the friction 
factors for the single-phase flows. 

Here, a technique similar to the mixing-length theory will be followed and the shear stress ~' 
will be given in the following form: 
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dy ~yy" [151 

The arguments that lead to the formulation of [15] are similar to the ones used by Prandtl (1925) 
and Pal (1957) and take into account the density fluxuations. The mixing lengths i. and lp must 
be zero at the wall and must be related to some other length of the problem. Here Prandtl's 
suggestion is followed, for simplicity, that these lengths are proportional to y, which is the only 
natural dimension of the problem: 

I. = lp = gy. [16] 

This expression has been preferred over more complicated ones, which, nevertheless give 
similar velocity profiles for single-phase flow. 

A change of variables in [15] will yield the following expression in terms of the boundary 
layer coordinates: 

[171 

where n is the boundary layer coordinate: 

7/= In (Y/Yo) • [18] 

As explained above, Y0 is the length of the laminar (viscous) sublayer and its value may be 
calculated from the following equation, which is valid for single-phase flow: (see Appendix A 
for its derivation): 

Yo = 0.111 k ( vJkV *  + 0.3). [191 

where k is the roughness of the pipe and v~ the kinematic viscosity (/zdp~) of the gaseous 
phase. It may be seen that if v d k V *  40.3 the roughness effects predominate and the pipe is 
characterized as rough, while in the opposite situation the pipe is smooth. For the integration 
with the boundary layer coordinate T/ the ratio r0/Y0 is needed to define the upper limit of 
integration 7*: 

7" = (In (rJyo) = In (ro/k) - In ( v JkV*  + 0.3) + 2.198. [201 

Thus far, the closure equation for the Reynolds stresses has been derived in terms of natural or 
boundary layer coordinates. A specification of the density distribution in the flow is still needed 
in order to derive a closed form relationship for the stress To. 

4. THE DISTRIBUTION OF DENSITY 

This study examines flows where the heavier phase (solid) is carried by a gaseous matrix, 
which is continuous. Experiments by Soo et al. (1960, 1964), Spencer (1966) and Peskin (1967), 
indicate that at the absence of electrostatic forces the solid will concentrate towards the center 
of the pipe. Therefore, at the wall of the pipe the average density is very close to the gas 
density. At the center of the pipe the average density attains its highest value, pm which is 
nevertheless lower than the density of the solid phase. The experimental results for the density 
distribution show that the functional form of the density distribution depends on the total solids 
concentration. Correlations of experimental data indicated that a suitable form of the density 
MF Vol. I0. No. I--E 



66 E.E. MICHAELIDES 

distribution function is: 

p = p~(1 + Ty/ro)", [21) 

where ~, and m depend on the total solid concentration. Then the maximum density p,. at the 
center of the pipe is: 

pm= pa(1 + T) m . [22] 

It appears in the works of Sop et al. (1%0, 1964), Spencer (1%6) and Peskins (1967) that m is a 
weak function of the total solids concentration and varies between 0.4 and 0.6. Therefore, m 
could be assumed to be a constant and attribute the whole density variation to 7. For the 
calculation described later m is taken to be 0.5 and 3, can vary from 0 (single phase fluid) to 
(p,/pG) ~l" - l (if at the center of the pipe only solid particles flow). Actually, the latter situation 
does not occur in practice, since there is always some aire between any two solid particles. 
Therefore the above value for V was considered as an upper limit for the density distribution 
and was not used in the calculations. 

Given this form of density distribution some practical quantifies of interest may be 
calculated. The space-average density j5 is given by the following expression: 

1 fro 
= Jo 2pcrr dr.  [231 

After substituting y = ro- r and the value of p from [21] the above expression yields: 

t~_ 2 
p-"G -- v2(m + 1)(m + 2) [(1 + 7) s+2- 1]. [24] 

The area-average density of the fluid is related to the average area occupied the solids 5 
(equivalent to the average void fraction in gas-liquid flows) as follows: 

= (1 - 5)06 + SOs. [25] 

Thus, 5 may be determined from the density distribution function. Another quantity, the local 
area fraction a(r) is also important for calculations. It is given by the following equation: 

p = (I - a)p~ + ap~, [26] 

where p = p(r) has given by [21] and a = a(r). It is evident that if [26] is space averaged, it will 
yield [25]. The local solids area fraction is a function of the radial position of the pipe and not a 
constant as other investigators have assumed (Julian & Dukler 1%5). This fact is supported by 
the experiments mentioned above. 

5. T H E  V E L O C I T Y  P R O F I L E  

In view of the function of the density distribution, the shear stress distribution may be 
written in the following form: 

du 
ro " + pGrog 

[2"/] 

The above emanates from [13] and the function G(x) is defined by the following integral: 
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O(x) = p/poX dx, 

with x = dro, and y = ro(1 - x). 

67 

[281 

Equation [29] may yield the velocity distribution in terms of the shear velocity V*. In order to assist 
in the calculations, the gravity term in brackets can be evaluated explicitly and the resulting 
expression can be written in terms of x: 

[291 

and 

1 1 
H(x) = xG(1) - x G(x) = ~/(m + 1) [(1 + ~/- Yx)S+' - x] 

+ ~2(m + 1)(m + 2) (1 + V -  Vx) m+2- x 

[30] 

A dimensionless velocity u* = u/V* is defined and also a Frounde number, F*, based on the 
shear velocity. 

F *  -- V* :~-~o)" [31] 

F*, hence, is the ratio of the viscous to the gravity forces. In view of the above the shear stress 
of [17] may be written in dimensionless form and in terms of the boundary layer coordinate ~: 

d'q I I d~ [J d'q 

where the function H is written in terms of ~: 

H(x) = H(1 - e"-'~), 

as defined explicitly in [30], Here, 

p* = p*(~) = (I + y e~-~°) - .  

The spatial coordinates x and y are written in terms of lq as follows: 

x = 1 - e  ~-~° , 

y = roe ~-~° . [36] 

The velocity profile u*(~) may be actually obtained from [32], which is a quadratic equation 

[321 

[33] 

[34] 

[35] 

r°~Y p~V*2 + porog [xG(1)-lG(x)]= ~2y2 [p6 (1 + ~Y)m I-~[ 

+ ulmp~ Y-(l + ? Yy"-ll ] du 
I ro\ rol I "~" 

After substituting in [27] for the density distribution and the wall shear in terms of the shear 
velocity (l"w --- poV .2) one may obtain: 
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with respect to the velocity gradient du*/dB. 

du* _ - B + X/(B 2 - 4AC) 

d~ 2A 
[37] 

where 

A = K2p *, [37a] 

B = K2u*ldp*/d,/I, [37b] 

and 

C = - 1 + e "-'~ - ~ H('0). [37c] 

Given that C < 0 and A > 0 [37] has always one positive root which is an acceptable value for 
du*/d~. Actually in this case where the density increases along ~ the absolute values in [32] are 
not necessary to be written explicitly, and the terms multiplying du*ld'0 in brackets may be 
written simply as d(u*p*)/dTI. The case would not have been the same if the solid particles had 
less density than the carrier fluid. Then the absolute value terms in the density profile should 
have been retained further and the terms in brackets could not have been written as above. 

One glance at [37] shows that it is a first order nonlinear ordinary differential equation with 
the boundary condition u*(-~o)= 0 (i.e. at the wall of the pipe the velocity is zero). Based on 
what was said above about the boundary layer coordinates and the choice of the laminar 
sublayer, this condition may be approximated to: 

u*(0) = o .  [38] 

Now [37] may be solved numerically to yield the velocity distribution u*(~l). This task is 
accomplished numerically and the results are shown in figure 1 for the following conditions: 
m = 0.5, ~o = 8 and ~ = 0.4; the loading m* is a parameter. It is observed that the depicted 
velocity profile differs from the incompressible flow prifile, which is given by the simpler 
expression 

u* = K~I + L.  [39] 

This difference is due to the presence of the density gradient terms, which introduce an extra 
term in the force balance equation. Julian & Dukler (1965) obtained the same type of velocity 
profiles by determining empirically the eddy diffusivity of the flows. 

6. AVERAGE VELOCITY AND MASS FLUX 

In the case of pipe flow the average velocity fi (or equivalently the volumetric flux per unit 
area) and the mass flux G are two quantities of interest to the engineer. These are defined as 
follows in terms of the spatial coordinate r: 

_ 2 fo r° ur dr = V*I I ,  [4O] 

and 

2 I "r° 
G = ~ J0 upr dr = V * p o I  2 . [41] 
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IxlO "z ixlO -i 

length, y*  = y/r o 

Figure 1. Velocity distributions for various Ioadings. 

In the above two expressions u and p must be given in terms of the spatial variable x. The 
integrals 11 and 12 are dimensionless and are representative of the above average quantities. 

Using integration by part the two integrals may be written as: 

1 f'° du* 
I t = -  rT jo  --~-rZdr, [421 

and 

I2= _I f'° d(u*p*) r 2 dr 
ro Jo dr " 

[42a] 

Substituting into boundary layer coordinates we may express the integrals by using [32] and 
[37]. 

= [ ' ~ o  du* 
It Jo "~-~ (1-e~-~°)2dT/ [43] 

and 

12= fon°d(u*P *) = f  ~°(I d'q (1-e ' l -~)  zd~ Jo 
- e n-'~) + ~ H(7/) 

K, d u* 
d~ 

(1 - e~-~) 2 dvl. [44] 

As explained before the final form of integral 12 may be written as in [44] only because both u* 
and p* are increasing functions of 7. Otherwise, the derivative d(u*p*)/d~ will have to be 
evaluated and 12 would be calculated from [44]; this would involve double integration. 

It is common engineering practice (Govier & Aziz 1972) to express the average quantities in 
a complex mixture in terms of the superficial velocities V,' and VJ,  defined as follows: 

p,A' [44] 
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VG s = mG 
p o A '  [45] 

where rh is the mass flow rate and A the total area. The superficial velocity of each phase is the 
fictitious velocity, that this phase would have if it was flowing alone in the pipe. 

The average velocity fi in the pipe is: 

and the average mass flux G: 

f~ = V :  + V o  ~ = I i F * ~ / ( g r o ) ,  

G = psV, S + poVaS = I2F*pa%/(gro). 

The actual average velocity of each phase may be obtained from the following equations: 

and 

[46] 

[47] 

Vs $ 
fi, = - -  [48b1 

Ot 

It is apparent that integrals I1 and 12 would yield easily all the above average quantities. 
Another quantity of interest to the engineer is the discharge density, pd: 

pd = G/tL [49a] 

which is in general different than the average density p because of the existence of slip. The 
discharge density may be written in terms of the two integrals I1 and/2 as follows: 

Pd = p o l d l t  . [49b] 

7. THE FRICTION FACTOR 

One may define a friction factor [ for the pipe according to the Fanning equation: 

d__et = 2fpd~ ~ 
dz D ' [50] 

where dpt/dz is the frictional component of the pressure loss, and D the diameter of the pipe. 
In terms of the integrals It and 12 the above equation may be written: 

= 2 " f p ° V * 2 l d 2  [51a] 
dz D 

The shear stress r ,  at the wall is: 

ldpt,. .  1~ ~r,2rr 
r W = ~ d  z ~ = ~ I P G -  "t,2. [51b] 

V d  [48a1 
fi6 = 1 - a  
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Thus, given that ~'w = PGV .2 we may write the friction factor f as follows: 

2 
f = I,h" [52] 

The last equation combined with [51] and [31] yields: 

d.~.p = 4 ~ , 2  
pGgror = 2gpGF .2 

dz 
[53] 

Therefore, the value of the Froude number F* of the flow will yield the frictional pressure 
gradient and in turn the shear stress at the wall. Hence, one only has to determine F* for a 
given situation in order to obtain the shear stress at the wall. This task is cumbersome and 
would involve the solution of the integral equation [41] (if the mass flux is known) or [40] (if the 
average velocity is known). The solution of either equation can be achieved by iteration. In 
practice one would usually know the "loading" m* of the flow (which is the ratio mdmo) and 
the volumetric flow rate of the gas (QG = mc,/Pa). Then the mass flux of the system is: 

O = QGpJA(1 + m*), [54] 

and [41] becomes an integral equation with F* as the only unknown: 

A A  
VG~G (1 + m*) = F*pG~(gro)I2 

A 
[41a] 

It has been a practice in the past (Rose & Duckworth 1969; Konchesky 1975a, 1975b; Pfeffer 
et al. 1966) to give a frictional pressure drop coefficient fm based on the gas-phase flow 
variables. This coefficient is defined as follows: 

$ 
I"~, = ~ fmPG(VG2), [SS] 

where VG" is the superficial velocity of the gas; fm is the fictitious coefficient what would yield 
the same shear ~'w with the gas-solid system when multiplied with the kinetic energy of the gas 
phase when flowing alone in the pipe. In the literature fm is often given as a function of m* and 
ReG" (Hetsroni 1982). Given that VG" = QJA the practical importance of fm is obvious: One 
can treat the solid-gas flow as a single-phase flow, obtain the term VG' and calculate Tw easily 
after fm has been estimated from correlations or tables. 

8. COMPARISON OF THE RESULTS WITH CORRELATIONS AND OTHER EXPERIMENTAL 

DATA 

Equations [51b] and [55] may be combined to yield an expression of f., in terms of the 
Fanning coefficient f: 

V* 2 fF,2rog~ 
fm = f (~--ff ) I,I2= 2 \ ~ }  . [56] 

Thus, the friction factor of the mixture fm can be calculated from the flow quantities. This 
friction factor is plotted in figure 2 vs the Reynolds number ReG' of the flow based on the 
superficial gas velocity: 

ReG s = VG~pc'D [57] 
P,G 
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smooth pipes 
. . . .  roughness = O.OI 

............ ~';c. ~ ~ I x l O i ~ _  

I x l O - 3 J  i i I , I I 
lx10 4 2 ,5 lx10 5 2 5 lx lO e 

Reynolds Number, Re~ 

Figure 2. The friction factor for different Ioadings and pipe roughnesses. 

The plot is for two loadings m* = 2.5 and m* = 6.0 and also for a smooth pipe (k/ro = 0) and for 
a rough pipe (k/r0 = 0.01). As expected higher Ioadings or increased roughness yield a higher 
friction factor. It is often argued that the passage of abrasive solids through the pipes will 
smoothen them and hence that most of the available experimental data correspond to smooth- 
pipe data. This trend was also observed with comparisons made with the present model; it 
seems though that most of the data compared exhibit friction factors slightly higher than those 
predicted for smooth pipes, thus indicating a small amount of residual pipe roughness. In the 
comparisons that follow the smooth-pipe results of this model will be compared to the other 
methods of prediction of friction factors. 

The results obtained by the present model were also compared with correlations of 
experimental data. First the correlation by Pfeffer et ai. (1%6) was compared and the results are 
depicted in figure 3. The Pfeffer correlation was developed from collected sets of data and it 

Io-=: 

,,'- 5 

I ! ! 

. . . .  Present model 
Pfeffer et ol. 

m*=6. 

1 
m*=2.5 

10"3l  I , I , , ,] 
Io" 2 5 lo 2 5 lo • 

Reynolds Number, R s e6 

Figure 3. Comparison of the results from present model with Pfeffer's correlation. 
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was said to predict lower values for fm (Hetsroni 1982) below Rco '  = 10 ~. This trend is observed 
in figure 3 also since Pfeffer curves lie even below the smooth pipe curves for this model. 
However, the discrepancy is very small and it is within the standard error of the correlation. 

Figure 4 shows the results obtained from this model together with results obtained from 
other correlations used for the predictions of the friction factor in gas-solid flows. The 
correlations by Dogin & Lebedev (1962), Rose & Barnacle (1957) and Pfeffer et al. (1966) are 
shown for m* = 6 and the ratio of densities P,/Po = 1000. It is apparent that there is good agreement 
between the results from this study and other correlations. Again, the present results would have 
been higher (and would be closer to the other experimental curves) if a finite roughness for the pipe 
was chosen. 

Finally, the results of this study are compared to those obtained by Julian & Dukler (1965). 
They used the data from six experimental studies (Hadu & Moistad 1949; Mitlin 1954; 
Helander 1956; DePew 1960; Clark et al. 1952; Hinlde, 1953) in order to correlate the eddy 
ditfusivity of the gas-solid mixtures. Their model assumed constant density profile and their 
velocity profiles are similar to the ones shown in figure 1. The comparison of the Julian and 
Dukler curves with those predicted from the present model are shown in figure 5, for m* = 1, 3 
and 5. It is observed that there is good agreement between the corresponding curves. The good 
agreement of the end result for the two models indicates that the observed higher eddy 
diffusivity in the past papers is entirelly due to the density variation across the pipe. This 
phenomenon is taken into account in [27] by the inclusion of the term uldp/dyl for the 
contribution of the density to the Reynolds stress. Thus, there was no reason to use an 
empirical relation for the eddy diffusivity. 

As pertains to the average densities predicted by this model figure 6 depicts a plot of P/Pc vs 
the loading ratio m*. The solid line represents the approximate equation. 

P/Pc "~ 1 + m*,  [58] 

as verified experimentally and as used by Hetsroni (1982) and Govier & Azis (1972), and the 
circles results from this model. It is obvious that there is almost no discrepency between the 
predicted and the correlation values. On the same graph the flow area ~ occupied by the solids 
is shown as derived from the average density results. 
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Figure 4. Comparison of the results from the present model with results emanating from empirical correlations. 
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Figure 5. Comparison of the results from the present model with the ones from Julian and Dukler's model. 
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Figure 6. The average density p and solids area fraction ~ vs. the loading ratio m*(pdp~ = 1000). The circles 
denote results of the present model. 

The preceding equations were developed for vertical pipe flows. However, the gravity terms 

[xG(1)-G(x)/x]  in the equation for the shear stress [27] are very small in comparison to the 
term ¢wrlro. Even if these terms are neglected there is very little difference in the friction factor, 
f~,. Therefore, the results obtained here may be used for hirozontal pipes, provided that the 
density distribution in them is symmetric (fine or medium size particles in high velocity flows). 
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It can be seen in figure 4 that there is a discrepancy in the correlations for the friction factor. 
This discrepancy is due to the fact trhat certain parameters, such as the size, shape and 
distribution of particles are not taken under consideration in many correlations. 

It must be emphasized that the present model is a mechanistic one and attempts to describe 
the gas-solid flows regardless of some details of the system, such as the shape and size of 
particles or the spread of the sizes of particles. It describes the time-average flow and predicts 
certain flow parameters for the complex mixtures. The general trend and the magnitudes of the 
variables for the flows predicted agree very well with experimental data. However, there is not 
very accurate prediction of certain sets of data in flows where sizes and shapes of particles play 
an important role. This is by no means refuting the validity of the model, since even the best 
regarded correlations also do not agree with many sets of experimental data (Martin & 
Michaelides 1983). The subject of air-solid flows is a very complex one and involves a great 
deal of variables. One may improve on the model by including the effects of all the important 
variables. It is thought that a more complex turbulent model, such as the ~-¢ model, would 
improve the prediction of the present one by including the effects of particle size and shape. 
The detailed discussion of such a model is beyond the scope of this paper. At the moment it 
seems that the results of this study are sufficiently accurate despite the simple approach to the 
modeling of two-phase systems. 

9. CONCLUSIONS 

A model was developed for gas-solid two-phase pipe flows based on a "zero equation" 
turbulence model. The complex mixture was taken to be a homogeneous fluid of variable 
density across the pipe cross-section. The Navier-Stokes equations for such a fluid were solved 
for the steady-state flow. The eddy diffusivity of such a system is enhanced by the variation of 
the density. The Reynolds' stresses for the flow exhibit two principal terms, which are calculated 
according to the mixing length hypothesis. 

The resulting model may be used to predict the superficial velocities of the two phases, the 
holdup and slip of the flow, as well as the frictional pressure drop. Also the average densities, 
mass flux and average velocities of the mixture may be easily calculated. The results of the 
calculations show a very good agreement with experimental data and existing correlations. 
Certain parameters in this study (such as the mixing lengths and the diffusivity terms) were 
determined arbitrarily because of the lack of experimental data. Extensive experimentation is 
needed for the determination of these parameters. Also needed are more data on the density 
distribution parameters, which here were determined according to a limited number of known 
data. 
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APPENDIX A 

The velocity distribution in the laminar layer is linear with respect to y, while in the 
turbulent region it is given as 

for smooth pipes, or 

u* = 2.5 In V*y + 5.5, [All 
va 

u* = 2.5 In ~+  8.5, [A2] 

for rough pipes. 
As explained in section 5 the end of the laminar sublayer is taken as the projection of the u* 

line in the u*, In y plane where u* becomes 0. This is manifested in [38] as u*(y = Yo) = 0. 
Accordingly the above equations yield: 

Y0 = 0.111 valV*. [A3] 

for smooth pipes or 

Y0 = 0.0334 k, [A4] 

for rough pipes. 
The combination of the last two equations yields [19]. It is observed that this choice of Yo 

reduces the width of the laminar sublayer and this makes the assumptions u*(y = Yo) = 0 and 
t(yo) = ~'w more realistic. It must be emphasized that the final results are not sensitive to the 
value of Yo. Other constants were tried and found to yield similar results. 


